
biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
Release 1.0.0

Bioexcel Project

Feb 18, 2021

Contents

1 Contents 3

2 Github repository. 27

i

ii

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

Contents 1

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

2 Contents

CHAPTER 1

Contents

1.1 Command-line workflows with BioExcel Building Blocks

This tutorial aims to illustrate the process of building up a command-line workflow using the BioExcel Building Blocks
library (biobb). The tutorial is based on the Protein Gromacs MD Setup Jupyter Notebook tutorial.

1.1.1 Settings

Biobb modules used

• biobb_io: Tools to fetch biomolecular data from public databases.

• biobb_model: Tools to model macromolecular structures.

• biobb_md: Tools to setup and run Molecular Dynamics simulations.

• biobb_analysis: Tools to analyse Molecular Dynamics trajectories.

Software requirements:

• Python3

• Anaconda

3

https://biobb-wf-command-line.readthedocs.io/en/latest/?badge=latest
https://github.com/bioexcel/biobb_wf_md_setup
https://github.com/bioexcel/biobb_io
https://github.com/bioexcel/biobb_model
https://github.com/bioexcel/biobb_md
https://github.com/bioexcel/biobb_analysis

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

1.1.2 Tutorial

Click here to view tutorial in Read the Docs

1.1.3 Version

May 2020 Release

1.1.4 Copyright & Licensing

This software has been developed in the MMB group at the BSC & IRB for the European BioExcel, funded by the
European Commission (EU H2020 823830, EU H2020 675728).

• (c) 2015-2020 Barcelona Supercomputing Center

• (c) 2015-2020 Institute for Research in Biomedicine

Licensed under the Apache License 2.0, see the file LICENSE for details.

1.2 Command-line workflows with BioExcel Building Blocks

1.2.1 Based on the Protein MD Setup tutorial using BioExcel Building Blocks
(biobb)

This tutorial aims to illustrate the process of building up a command-line workflow using the BioExcel Building
Blocks library (biobb). The tutorial is based on the Protein Gromacs MD Setup Jupyter Notebook tutorial.

Biobb modules used:

• biobb_io: Tools to fetch biomolecular data from public databases.

• biobb_model: Tools to model macromolecular structures.

4 Chapter 1. Contents

https://biobb-wf-command-line.readthedocs.io/en/latest/index.html
http://mmb.irbbarcelona.org
http://www.bsc.es/
https://www.irbbarcelona.org/
http://bioexcel.eu/
http://cordis.europa.eu/projects/823830
http://cordis.europa.eu/projects/675728
https://www.bsc.es/
https://www.irbbarcelona.org/
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/bioexcel/biobb_wf_md_setup
https://github.com/bioexcel/biobb_io
https://github.com/bioexcel/biobb_model

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

• biobb_md: Tools to setup and run Molecular Dynamics simulations.

• biobb_analysis: Tools to analyse Molecular Dynamics trajectories.

Software requirements:

• Python3

• Anaconda

1.2.2 Tutorial Sections:

1. Introduction

2. Why Command Line

3. Essential points / Before Starting

1. Workflow General Concepts

2. Configuration Input File General Concepts

4. First Example

5. Protein MD-Setup workflow

6. Questions & Comments

1.2.3 Introduction

Biomolecular workflows built using BioExcel building blocks (biobb) can be launched in command line (without
Jupyter or iPython interactivity) with a combination of a Python script and a separated yaml formatted file containing
the input parameters. This approximation combines the power of the scripting in Python with the interoperability
of biomolecular simulation workflows provided by the BioExcel building blocks, and is the one used in production
runs.

The example used to illustrate the process of building a command line biomolecular simulation workflow with the
BioExcel building blocks will be the Protein MD Setup presented in the Jupyter Notebook tutorial. In the first steps

1.2. Command-line workflows with BioExcel Building Blocks 5

https://github.com/bioexcel/biobb_md
https://github.com/bioexcel/biobb_analysis
https://github.com/bioexcel/biobb_wf_md_setup

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

section, the main points to take into account when building a command line workflow will be introduced, using as
example the first 2 steps of the Protein MD Setup. In the Protein MD Setup command-line workflow section, the
complete workflow presented in the Jupyter Notebook tutorial will be translated to a Python script + yaml-formatted
file to launch it in a command-line interface.

1.2.4 IMPORTANT NOTE

Please note that this Jupyter Notebook is NOT executable, it is just used to illustrate the process. Cells containing
source code are used to show information in a graphical way, but they are NOT designed to be executed.

1.2.5 Why command line

Jupyter Notebooks are fantastic tools to explore and play with software, and in particular, with the BioExcel building
blocks library. But when a workflow is ready to start with production, or it needs to be expanded with more complex
loop/conditional structures, the best option is to move from a GUI to a command line execution. In command line
is where the real power of the BioExcel building blocks unleashes.

Going from a Jupyter Notebook to a command line python script is as easy as exporting the notebook to a Python
script (Menu –> File –> Download as –> Python (.py)). The downloaded Python script will be executable just typing
python name_of_the_notebook.py (in our case, python biobb_MDsetup_tutorial.py). Remember that for the script to
properly work, the library modules should have been previously installed in your conda environment, following the
Protein MD tutorial installation steps (Conda Installation and Launch).

Moving from the Jupyter environment to a command line, we are going to miss the interactivity and the possibility
to use graphical support such as 3D structure viewers or plot representation. But it will offer us a jump to the High
Throughput (HT) regime. Many different instances of the workflow can be launched at the same time with different
inputs. Command line executions are offering us automation and repetition. However, when a particular input file or
step parameter needs to be changed, the main Python script should be changed. That’s why the BioExcel building
blocks workflows are divided in two files:

• Workflow Python code: Main code of the workflow, with the different steps and flowchart.

• Configuration file (YAML): Input files (paths) and parameters for all the different steps of the workflow.

With this, there’s no need for the main Python code to be modified for every different execution. Just changing the
input configuration file is enough. The next steps of the tutorial are introducing the basic concepts of both workflow
and configuration input files.

1.2.6 Essential points / Before Starting

Before starting with the tutorial, a set of important terms that will appear during the building of BioExcel building
blocks workflows need to be introduced. These terms are divided in the workflow ones, applied in the Python script
describing the workflow, and the configuration input file ones, applied in the separated YAML configuration file.

6 Chapter 1. Contents

https://github.com/bioexcel/biobb_wf_md_setup

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

Workflow general concepts (Python):

BioExcel building blocks workflows Python scripts always start with the initialization of 3 main variables:

• Configuration info (conf), loaded from the input configuration file.

• Properties and parameters (global_prop, global_paths) for all the different steps of the workflow, parsed from
the configuration info.

• Configuration Info: Loading the configuration information from the input configuration YAML file. It is done
using the ConfReader tool from the biobb_common configuration library:

conf = settings.ConfReader(config), where config is:

- config (str): Path to the configuration YAML file.

Example:

conf = settings.ConfReader(“input_config_file”)

Configuration information read from the file “input_config_file”.

• Global properties: Collection of properties (tool parameters) for every step of the workflow extracted from the
Configuration Info. It is generated using the get_prop_dic tool from the biobb_common configuration library:

global_prop = conf.get_prop_dic(params), where params could be:

- prefix (str): Prefix if provided. Prefix is used to add levels of hierarchy in the
→˓workflow structure.
- global_log (Logger object): Log from the main workflow.

Example:

global_prop = conf.get_prop_dic(global_log=global_log) *global_prop variable contains all the prop-
erties for all the workflow steps, parsed from the input configuration file. As the global_log is passed as
input, local logs from all the steps will be appended to the global log.

• Global paths: Collection of paths (tool inputs & outputs) for every step of the workflow extracted from the
Configuration Info. It is generated using the get_paths_dic tool from the biobb_common configuration library:

global_paths = conf.get_paths_dic(params), where params could be:

- prefix (str): Prefix if provided. Prefix is used to add levels of hierarchy in the
→˓workflow structure.

Example:

global_paths = conf.get_paths_dic()

Optionally, a Global Log could be initialized, capturing log information for the whole workflow.

• Global log files (output log and error log).

• Global Log: Name of the file that will contain the global log of the workflow execution. Usually created only
once at the beginning of the workflow. It is generated using the get_logs tool from the biobb_common file_utils
library:

global_log_out, global_log_err = file_utils.get_logs(params), where params could be:

- path (str): Path to the log file directory. By default assigned to the current
→˓working directory.
- prefix (str): Prefix added to the name of the log file. By default log.out and log.
→˓err.

(continues on next page)

1.2. Command-line workflows with BioExcel Building Blocks 7

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

- step (str): String added between the prefix and the name of the log file.
- can_write_console (bool): If True, show log in the execution terminal. False by
→˓default.
- level (str): Set Logging level. [‘CRITICAL’,’ERROR’,’WARNING’,’INFO’,’DEBUG’,
→˓’NOTSET’]. INFO by default.
- light_format (bool): Minimalist log format. False by default.

Example:

log_out,log_err = file_utils.get_logs(path=’/home/biobb/wf_example/’, prefix=’tutorial’,
level=’WARNING’)

Log file directory written to the ‘/home/biobb/wf_example/’ working dir path (path), with level of logging set to
‘WARNING’ (level). The names of the log files will be tutorial_log.out and tutorial_log.err (prefix).

The next cell shows an example of the typically first lines of a BioExcel building blocks workflow, initializing the
Configuration Info (conf), the tools parameters (global_prop), the tools inputs & outputs (global_paths) and the
global log (global_log):

Workflow concepts: Configuration Info, global paths & global properties
from biobb_common.configuration import settings

conf = settings.ConfReader(config_yaml_file)
global_prop = conf.get_prop_dic()
global_paths = conf.get_paths_dic()

Workflow concepts: Global Log
from biobb_common.tools import file_utils

global_log, _ = file_utils.get_logs(path="/home/biobb/wf_example", level='WARNING')

Configuration input file concepts (YAML):

The YAML configuration file that contains all the workflow input parameters has a well-defined structure, divided
in 2 main sections: the Global Workflow Properties, which are properties applied to the whole workflow, and the
different Workflow Steps, with properties for all the different steps of the workflow, one by one.

1. Global Workflow Properties: Define global workflow properties and are typically stated at the beginning of
the YAML file. Available global properties are:

• working_dir_path: Workflow output directory, where all results are going to be written.

• can_write_console_log: Enable the automatic output of the information log to the console.

• remove_tmp: Remove temporary files after execution.

• restart: Skip already computed steps. Automatically detects already computed steps checking existence
of output files. Useful in long executions that didn’t reach the end for whatever reason.

Example of Global Workflow Properties:

YAML configuration input file concepts: Global Workflow Properties

working_dir_path: md_tutorial # Folder to write i/o files of the workflow
→˓steps
can_write_console_log: False # Verbose writing of log information
remove_tmp: True # Remove temporary files after execution
restart: True # Skip steps already performed

8 Chapter 1. Contents

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

2. Workflow Steps: Independent properties applied to each single step of the workflow, defined one by one.
Usually, there should be at least as many steps definitions as steps defined in the Python workflow. The
name of the step is used in the Python workflow script to identify input/output files and properties for the
corresponding workflow step. Workflow Steps definitions are divided in two fields:

• Paths: Inputs and Outputs of the building blocks. Defined as file names with relative or absolute paths,
or as dependencies from output files coming from previous steps of the workflow. If a step needs (as
input) an output from a previous step, a dependency should be specified. Dependencies syntax is defined
as: dependency/previous_step_name/previous_step_output_name (see example below).

• Properties: Configuration parameter (properties) of the building blocks. Specific input parameters for
the particular building block, always defined inside a properties field.

Example of Workflow Steps:

Configuration input file concepts: Workflow Steps

Step 1: Downloading PDB 1AKI and saving it to the "structure.pdb" file
step1_pdb:
paths:

output_pdb_path: structure.pdb
properties:

pdb_code: 1aki

Step 2: Fixing side chains of the structure and saving it to the "fixsidechain.
→˓pdb" file
Input structure (input_pdb_path) is defined as a dependency from the
output_pdb_path of the previous step1_pdb step (dependency/step1_pdb/output_pdb_
→˓path)
step2_fixsidechain:
paths:
input_pdb_path: dependency/step1_pdb/output_pdb_path
output_pdb_path: fixsidechain.pdb

Paths and properties for each of the building blocks available in the biobb library can be found in the corresponding
module documentation pages. Please visit https://mmb.irbbarcelona.org/biobb/availability/source to quickly find
links to the desired module documentation.

Each building block has its own set of specific properties (parameters). However, there is a list of properties that are
common to most of the building blocks. Those are the Common Step Properties that can be added to any of the
BioExcel building blocks:

• can_write_console_log: Overwrite can_write_console_log workflow property on this step.

• remove_tmp: Overwrite remove_tmp workflow property on this step.

• restart: Overwrite restart workflow property on this step.

There is also a list of common properties for all the container-compatible building blocks (those able to wrap tools
embedded in Docker or Singularity containers). The list of these common properties are:

• container_path: Path to the binary executable of your container.

• container_image: Container Image identifier.

• container_volume_path: Path to an internal directory in the container.

• container_working_dir: Path to the internal CWD in the container.

• container_user_id: User number id to be mapped inside the container.

• container_shell_path: Path to the binary executable of the container shell.

1.2. Command-line workflows with BioExcel Building Blocks 9

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

Example of Workflow Steps with container Common Properties, taken from the Mutation free energy calculations
tutorial:

Configuration input file concepts: Common Step Properties

Step 1: Modelling mutated structure with the desired new residue (Isoleucine 10 to
→˓Alanine) using pmx package.
step1_pmx_mutate:

paths:
output_structure_path: mut.gro

properties:
mutation_list : Ile10Ala
force_field: amber99sb-star-ildn-mut
container_path: singularity
container_image: /home/group/user/singularities/pmx_standalone.sif

1.2.7 First Example

The first two steps of the Protein MD Setup workflow are responsible for downloading a protein structure from
the PDB database, and fixing the structure, adding any missing side chain atoms. The building blocks used for
this are the Pdb building block, from the biobb_io package, including tools to fetch biomolecular data from public
databases, and the FixSideChain building block, from the biobb_model package, including tools to check and model
3d structures, create mutations or reconstruct missing atoms.

The first 2 steps of the Protein MD Setup workflow Jupyter Notebook tutorial look like this:

Extract from the Protein MD Setup workflow Jupyter Notebook tutorial
https://github.com/bioexcel/biobb_wf_md_setup

Input Vars

pdbCode = "1AKI"

Step 1

Downloading desired PDB file
Import module
from biobb_io.api.pdb import Pdb

Create properties dict and inputs/outputs
downloaded_pdb = pdbCode+'.pdb'
prop = {

'pdb_code': pdbCode
}

Create and launch bb
Pdb(output_pdb_path=downloaded_pdb,

properties=prop).launch()

Step 2

Check & Fix PDB
Import module
from biobb_model.model.fix_side_chain import FixSideChain

(continues on next page)

10 Chapter 1. Contents

http://mmb.irbbarcelona.org/biobb/availability/tutorials/pmx
https://github.com/bioexcel/biobb_io/blob/master/biobb_io/api/pdb.py
https://github.com/bioexcel/biobb_io
https://github.com/bioexcel/biobb_model/blob/master/biobb_model/model/fix_side_chain.py
https://github.com/bioexcel/biobb_model
https://github.com/bioexcel/biobb_wf_md_setup

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

Create prop dict and inputs/outputs
fixed_pdb = pdbCode + '_fixed.pdb'

Create and launch bb
FixSideChain(input_pdb_path=downloaded_pdb,

output_pdb_path=fixed_pdb).launch()

Converting these 2 steps into a command-line workflow requires to split the code in two:

• The workflow (Python script)

• The input parameters (YAML file)

Python Script

The Python script is build taking just the calls to the BioExcel building blocks.

Step by step, first we need to import all the required modules:

• sys, to be able to retrieve the input parameters of the Python script (argv).

• settings, from biobb_common module, to be able to retrieve the workflow input parameters from the sepa-
rated YAML file.

• Pdb, from biobb_io module, to retrieve a PDB structure from the RCSB PDB database.

• FixSideChain, from biobb_model, to add any missing atom in the side chains of the protein.

#!/usr/bin/env python3

import sys
from biobb_common.configuration import settings
from biobb_io.api.pdb import Pdb
from biobb_model.model.fix_side_chain import FixSideChain

Then, retrieve the YAML configuration file from the command-line arguments passed to the Python script (argv),
and load them using the settings ConfReader function. This function is able to split the input data included in the
configuration file in two: paths (inputs/outputs) and properties (parameters) for each of the defined steps of the
workflow. This is done using the corresponding class functions get_paths_dic and get_prop_dic.

Input Vars

Loading the biobb configuration reader
conf = settings.ConfReader(sys.argv[1])

Reading the inputs and properties from the separated YAML file
conf_properties = conf.get_prop_dic()
conf_inputs = conf.get_paths_dic()

Finally, we need to call the building blocks using its common class function launch. As input parameters all the
building blocks are prepared to receive the paths (inputs and outputs) and the properties (input parameters). As
we already have previously read all this data and stored it in the conf_inputs and conf_properties variables, we
can now use them to extract the corresponding step inputs, using the name (id) of each step as a key. To be com-
patible with the format accepted by the building blocks, the input paths should be expanded (using the Python
prefix operator to unpack dictionaries). Thus, the paths for the step1 are passed as an argument using its ex-
panded version: conf_inputs[“step1_pdb”]. Oppositely, the properties of each step are passed directly: proper-
ties=conf_properties[“step1_pdb”]. This syntax is repeated for all of the steps in the workflow.

1.2. Command-line workflows with BioExcel Building Blocks 11

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

Step 1
Pdb(**conf_inputs["step1_pdb"], properties=conf_properties["step1_pdb"]).launch()

Step 2
FixSideChain(**conf_inputs["step2_fixsidechain"], properties=conf_properties["step2_
→˓fixsidechain"]).launch()

The information placed in the paths and properties terms of the YAML separated files is explained in the next
section.

The complete example of the Python script for the first two steps of the Protein MD Setup workflow looks like this:

#!/usr/bin/env python3

import sys
from biobb_common.configuration import settings
from biobb_io.api.pdb import Pdb
from biobb_model.model.fix_side_chain import FixSideChain

Input Vars

Loading the biobb configuration reader
conf = settings.ConfReader(sys.argv[1])

Reading the inputs and properties from the separated YAML file
conf_properties = conf.get_prop_dic()
conf_inputs = conf.get_paths_dic()

Step 1
Pdb(**conf_inputs["step1_pdb"], properties=conf_properties["step1_pdb"]).launch()

Step 2
FixSideChain(**conf_inputs["step2_fixsidechain"], properties=conf_properties["step2_
→˓fixsidechain"]).launch()

YAML configuration file

The YAML configuration file containing the input parameters for this example includes the paths and properties
of the two first steps of the Protein MD Setup workflow:

Step 1: Downloading PDB 1AKI and saving it to the "structure.pdb" file
step1_pdb:
paths:
output_pdb_path: structure.pdb

properties:
pdb_code: 1aki

Step 2: Fixing side chains of the structure and saving it to the "fixsidechain.pdb"
→˓file
Input structure (input_pdb_path) is defined as a dependency from the
output_pdb_path of the previous step1_pdb step (dependency/step1_pdb/output_pdb_
→˓path)
step2_fixsidechain:
paths:
input_pdb_path: dependency/step1_pdb/output_pdb_path
output_pdb_path: fixsidechain.pdb

12 Chapter 1. Contents

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

Run example workflow

The final step of the process is running the command-line workflow. For that, the Python script and the YAML
configuration file presented in the previous cells should be written to disk (e.g. biobb_MDsetup_tutorial-lite.py and
biobb_MDsetup_tutorial-lite.yaml), and finally both files should be used to run the workflow.

It is important to note that in order to properly run the workflow, all the BioExcel building blocks modules used
should be previously installed following the Protein MD tutorial installation steps (Conda Installation and Launch).

The command line is shown in the cell below:

python biobb_MDsetup_tutorial-lite.py biobb_MDsetup_tutorial-lite.yaml

Workflow output

The execution of the workflow will write information to the standard output such as the tools being executed, the
command lines, inputs and outputs used, and state of each step (exit codes). The next cell contains a real output
for the execution of our first example:

2020-05-20 18:32:14,229 [INFO] Downloading: 1aki from: https://files.rcsb.org/
→˓download/1aki.pdb
2020-05-20 18:32:14,229 [INFO] Downloading: 1aki from: https://files.rcsb.org/
→˓download/1aki.pdb
2020-05-20 18:32:15,192 [INFO] Writting pdb to: /Users/biobb_tutorials/VT/cli/Yaml/
→˓md_tutorial-lite/step1_pdb/structure.pdb
2020-05-20 18:32:15,192 [INFO] Writting pdb to: /Users/biobb_tutorials/VT/cli/
→˓Yaml/md_tutorial-lite/step1_pdb/structure.pdb
2020-05-20 18:32:15,192 [INFO] Filtering lines NOT starting with one of these
→˓words: ['ATOM', 'MODEL', 'ENDMDL']
2020-05-20 18:32:15,192 [INFO] Filtering lines NOT starting with one of these
→˓words: ['ATOM', 'MODEL', 'ENDMDL']

2020-05-20 18:32:15,750 [INFO] check_structure -i /Users/biobb_tutorials/VT/cli/
→˓Yaml/md_tutorial-lite/step1_pdb/structure.pdb

-o /Users/biobb_tutorials/VT/cli/Yaml/md_tutorial-lite/step2_fixsidechain/
→˓fixsidechain.pdb --force_save fixside --fix ALL

2020-05-20 18:32:15,750 [INFO] Exit code 0

2020-05-20 18:32:15,750 [INFO]
===
= MDWeb structure checking utility =
= A. Hospital, P. Andrio, J.L. Gelpi 2018 =
===

Structure /Users/biobb_tutorials/VT/cli/Yaml/md_tutorial-lite/step1_pdb/structure.pdb
→˓loaded
Title:
Experimental method: unknown
Resolution: 0.0 A

Num. models: 1
Num. chains: 1 (A: Protein)
Num. residues: 129
Num. residues with ins. codes: 0
Num. HETATM residues: 0

(continues on next page)

1.2. Command-line workflows with BioExcel Building Blocks 13

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

Num. ligands or modified residues: 0
Num. water mol.: 0
Num. atoms: 1001

Running fixside. Options: --fix ALL
No residues with missing side chain atoms found
Structure not modified, saving due to --force_save option
Final Num. models: 1
Final Num. chains: 1 (A: Protein)
Final Num. residues: 129
Final Num. residues with ins. codes: 0
Final Num. HETATM residues: 0
Final Num. ligands or modified residues: 0
Final Num. water mol.: 0
Final Num. atoms: 1001
Structure saved on /Users/biobb_tutorials/VT/cli/Yaml/md_tutorial-lite/step2_
→˓fixsidechain/fixsidechain.pdb

2020-05-20 18:32:15,751 [INFO] Executing: check_structure -i /Users/biobb_
→˓tutorials/VT/cli/Yaml/md_tutorial-lite/...
2020-05-20 18:32:15,751 [INFO] Exit code 0

1.2.8 Protein MD-Setup workflow

The last step of this tutorial illustrates the building of a complex workflow using the BioExcel building blocks library
in command line. The example used is taken from the Protein MD Setup Jupyter Notebook tutorial. It is strongly
recommended to take a look at this notebook before moving on to the next sections of this tutorial, as it contains
information for all the building blocks used. The aim of this tutorial is to illustrate how to build a command line
workflow using the BioExcel building blocks. For information about the science behind every step of the workflow,
please refer to the Protein MD Setup Jupyter Notebook tutorial. The workflow presented in the next cells is a
translation of the very same workflow to Python + YAML files, including the same number of steps (23) and building
blocks.

Steps:

First of all, let’s define the steps of the workflow.

• Fetching PDB Structure: step 1

• Fix Protein Structure: step 2

• Create Protein System Topology: step 3

• Create Solvent Box: step 4

• Fill the Box with Water Molecules: step 5

• Adding Ions: steps 6 and 7

• Energetically Minimize the System: steps 8, 9 and 10

• Equilibrate the System (NVT): steps 11, 12 and 13

• Equilibrate the System (NPT): steps 14, 15 and 16

• Free Molecular Dynamics Simulation: steps 17 and 18

14 Chapter 1. Contents

http://mmb.irbbarcelona.org/biobb/availability/tutorials/md_setup

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

• Post-processing Resulting 3D Trajectory: steps 19 to 23

Mandatory and optional inputs and outputs of every building block can be consulted in the appropriate documenta-
tion pages from the corresponding BioExcel building block category (see updated table here).

As explained in the previous sections, the workflow should be split in two different files: a Python script including
the workflow pipeline, and a YAML file containing all the required inputs.

Python Script:

The steps to convert the Protein MD Setup Jupyter Notebook tutorial to a command line workflow are simple:

1. Importing all the needed libraries: system libraries (sys, os, argparse) and BioExcel building block libraries
(biobb_*).

2. Parsing the input configuration file (YAML) (see previous steps of this tutorial), and dividing the information
in global paths and global properties. Optionally initializing a global log file.

3. Declaring the steps of the workflow, one by one, using as inputs the global paths and global properties,
identified by the corresponding step name.

NOTE: Remember that going from a Jupyter Notebook to a command line python script is as easy as exporting
the notebook to a Python script (Menu –> File –> Download as –> Python (.py)). However, splitting the workflow in
two files allows changing input parameters without the need of any modification to the main Python script, really
convenient if many executions are planned.

The final Protein MD Setup Jupyter Notebook tutorial converted to an independent Python script follows:

#!/usr/bin/env python3

Conversion of the BioExcel building blocks Protein MD Setup Jupyter Notebook
→˓tutorial
to a command line workflow with two files: Python Script and YAML input
→˓configuration file
Example of Python Script (should be accompanied by a YAML input configuration file)

Importing all the needed libraries
import sys
import os
import time
import argparse
from biobb_common.configuration import settings
from biobb_common.tools import file_utils as fu
from biobb_io.api.pdb import Pdb
from biobb_model.model.fix_side_chain import FixSideChain
from biobb_model.model.mutate import Mutate
from biobb_md.gromacs.pdb2gmx import Pdb2gmx
from biobb_md.gromacs.editconf import Editconf
from biobb_md.gromacs.solvate import Solvate
from biobb_md.gromacs.grompp import Grompp
from biobb_md.gromacs.genion import Genion
from biobb_md.gromacs.mdrun import Mdrun
from biobb_analysis.gromacs.gmx_rms import GMXRms
from biobb_analysis.gromacs.gmx_rgyr import GMXRgyr
from biobb_analysis.gromacs.gmx_energy import GMXEnergy
from biobb_analysis.gromacs.gmx_image import GMXImage
from biobb_analysis.gromacs.gmx_trjconv_str import GMXTrjConvStr

Receiving the input configuration file (YAML)
(continues on next page)

1.2. Command-line workflows with BioExcel Building Blocks 15

http://mmb.irbbarcelona.org/webdev/slim/biobb/public/availability/source

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

conf = settings.ConfReader(sys.argv[1])

Initializing a global log file
global_log, _ = fu.get_logs(path=conf.get_working_dir_path(), light_format=True)

Parsing the input configuration file (YAML);
Dividing it in global paths and global properties
global_prop = conf.get_prop_dic(global_log=global_log)
global_paths = conf.get_paths_dic()

Declaring the steps of the workflow, one by one
Using as inputs the global paths and global properties
identified by the corresponding step name
Writing information about each step to the global log
global_log.info("step1_pdb: Dowload the initial Structure")
Pdb(**global_paths["step1_pdb"], properties=global_prop["step1_pdb"]).launch()

global_log.info("step2_fixsidechain: Modeling the missing heavy atoms in the
→˓structure side chains")
FixSideChain(**global_paths["step2_fixsidechain"], properties=global_prop["step2_
→˓fixsidechain"]).launch()

global_log.info("step3_pdb2gmx: Generate the topology")
Pdb2gmx(**global_paths["step3_pdb2gmx"], properties=global_prop["step3_pdb2gmx"]).
→˓launch()

global_log.info("step4_editconf: Create the solvent box")
Editconf(**global_paths["step4_editconf"], properties=global_prop["step4_editconf"]).
→˓launch()

global_log.info("step5_solvate: Fill the solvent box with water molecules")
Solvate(**global_paths["step5_solvate"], properties=global_prop["step5_solvate"]).
→˓launch()

global_log.info("step6_grompp_genion: Preprocess ion generation")
Grompp(**global_paths["step6_grompp_genion"], properties=global_prop["step6_grompp_
→˓genion"]).launch()

global_log.info("step7_genion: Ion generation")
Genion(**global_paths["step7_genion"], properties=global_prop["step7_genion"]).
→˓launch()

global_log.info("step8_grompp_min: Preprocess energy minimization")
Grompp(**global_paths["step8_grompp_min"], properties=global_prop["step8_grompp_min
→˓"]).launch()

global_log.info("step9_mdrun_min: Execute energy minimization")
Mdrun(**global_paths["step9_mdrun_min"], properties=global_prop["step9_mdrun_min"]).
→˓launch()

global_log.info("step10_energy_min: Compute potential energy during minimization")
GMXEnergy(**global_paths["step10_energy_min"], properties=global_prop["step10_energy_
→˓min"]).launch()

global_log.info("step11_grompp_nvt: Preprocess system temperature equilibration")
Grompp(**global_paths["step11_grompp_nvt"], properties=global_prop["step11_grompp_nvt
→˓"]).launch()

(continues on next page)

16 Chapter 1. Contents

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

global_log.info("step12_mdrun_nvt: Execute system temperature equilibration")
Mdrun(**global_paths["step12_mdrun_nvt"], properties=global_prop["step12_mdrun_nvt"]).
→˓launch()

global_log.info("step13_energy_nvt: Compute temperature during NVT equilibration")
GMXEnergy(**global_paths["step13_energy_nvt"], properties=global_prop["step13_energy_
→˓nvt"]).launch()

global_log.info("step14_grompp_npt: Preprocess system pressure equilibration")
Grompp(**global_paths["step14_grompp_npt"], properties=global_prop["step14_grompp_npt
→˓"]).launch()

global_log.info("step15_mdrun_npt: Execute system pressure equilibration")
Mdrun(**global_paths["step15_mdrun_npt"], properties=global_prop["step15_mdrun_npt"]).
→˓launch()

global_log.info("step16_energy_npt: Compute Density & Pressure during NPT
→˓equilibration")
GMXEnergy(**global_paths["step16_energy_npt"], properties=global_prop["step16_energy_
→˓npt"]).launch()

global_log.info("step17_grompp_md: Preprocess free dynamics")
Grompp(**global_paths["step17_grompp_md"], properties=global_prop["step17_grompp_md
→˓"]).launch()

global_log.info("step18_mdrun_md: Execute free molecular dynamics simulation")
Mdrun(**global_paths["step18_mdrun_md"], properties=global_prop["step18_mdrun_md"]).
→˓launch()

global_log.info("step19_rmsfirst: Compute Root Mean Square deviation against
→˓equilibrated structure (first)")
GMXRms(**global_paths["step19_rmsfirst"], properties=global_prop["step19_rmsfirst"]).
→˓launch()

global_log.info("step20_rmsexp: Compute Root Mean Square deviation against minimized
→˓structure (exp)")
GMXRms(**global_paths["step20_rmsexp"], properties=global_prop["step20_rmsexp"]).
→˓launch()

global_log.info("step21_rgyr: Compute Radius of Gyration to measure the protein
→˓compactness during the free MD simulation")
GMXRgyr(**global_paths["step21_rgyr"], properties=global_prop["step21_rgyr"]).launch()

global_log.info("step22_image: Imaging the resulting trajectory")
GMXImage(**global_paths["step22_image"], properties=global_prop["step22_image"]).
→˓launch()

global_log.info("step23_dry: Removing water molecules and ions from the resulting
→˓structure")
GMXTrjConvStr(**global_paths["step23_dry"], properties=global_prop["step23_dry"]).
→˓launch()

1.2. Command-line workflows with BioExcel Building Blocks 17

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

Input YAML Configuration File:

The YAML configuration file containing the input parameters for the Protein MD Setup workflow includes the
workflow global properties and the specific paths and properties of the previously introduced 23 steps.

The workflow global properties are typically stated at the beginning of the YAML file (e.g. working_dir_path:
md_tutorial).

The name of the steps should match the one written in the Python Script: step name is the link of the two files (e.g.
step2_fixsidechain).

For each step, the paths section contains the list of input and/or output files, either with file names (with relative
or absolute system paths) or with dependencies from previous steps of the workflow (see previous sections of the
tutorial).

For each step, the properties section contains the list of building block-specific input parameters, if needed (prop-
erties are optional). The list of specific properties for each of the BioExcel building blocks can be found in the
appropriate documentation sites (see updated table here).

The input paths and parameters for the Protein MD Setup Jupyter Notebook tutorial converted to an independent
Input YAML Configuration file follows:

Example of a YAML configuration file for a BioExcel building blocks workflow

working_dir_path: md_tutorial # Folder to write i/o files of the workflow steps
can_write_console_log: False # Verbose writing of log information
restart: True # Skip steps already performed

step1_pdb:
paths:
output_pdb_path: structure.pdb

properties:
pdb_code: 1aki

step2_fixsidechain:
paths:
input_pdb_path: dependency/step1_pdb/output_pdb_path
output_pdb_path: fixsidechain.pdb

step3_pdb2gmx:
paths:
input_pdb_path: dependency/step2_fixsidechain/output_pdb_path
output_gro_path: pdb2gmx.gro
output_top_zip_path: pdb2gmx_top.zip

step4_editconf:
paths:
input_gro_path: dependency/step3_pdb2gmx/output_gro_path
output_gro_path: editconf.gro

step5_solvate:
paths:
input_solute_gro_path: dependency/step4_editconf/output_gro_path
output_gro_path: solvate.gro
input_top_zip_path: dependency/step3_pdb2gmx/output_top_zip_path
output_top_zip_path: solvate_top.zip

step6_grompp_genion:
paths:

(continues on next page)

18 Chapter 1. Contents

http://mmb.irbbarcelona.org/webdev/slim/biobb/public/availability/source

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

input_gro_path: dependency/step5_solvate/output_gro_path
input_top_zip_path: dependency/step5_solvate/output_top_zip_path
output_tpr_path: gppion.tpr

properties:
mdp:

nsteps: 5000
simulation_type: minimization

step7_genion:
paths:
input_tpr_path: dependency/step6_grompp_genion/output_tpr_path
output_gro_path: genion.gro
input_top_zip_path: dependency/step5_solvate/output_top_zip_path
output_top_zip_path: genion_top.zip

properties:
neutral: True
concentration: 0.05

step8_grompp_min:
paths:
input_gro_path: dependency/step7_genion/output_gro_path
input_top_zip_path: dependency/step7_genion/output_top_zip_path
output_tpr_path: gppmin.tpr

properties:
mdp:

nsteps: 5000
emtol: 500

simulation_type: minimization

step9_mdrun_min:
paths:
input_tpr_path: dependency/step8_grompp_min/output_tpr_path
output_trr_path: min.trr
output_gro_path: min.gro
output_edr_path: min.edr
output_log_path: min.log

step10_energy_min:
paths:

input_energy_path: dependency/step9_mdrun_min/output_edr_path
output_xvg_path: min_ene.xvg

properties:
terms: ["Potential"]

step11_grompp_nvt:
paths:
input_gro_path: dependency/step9_mdrun_min/output_gro_path
input_top_zip_path: dependency/step7_genion/output_top_zip_path
output_tpr_path: gppnvt.tpr

properties:
mdp:

nsteps: 5000
simulation_type: nvt

step12_mdrun_nvt:
paths:
input_tpr_path: dependency/step11_grompp_nvt/output_tpr_path

(continues on next page)

1.2. Command-line workflows with BioExcel Building Blocks 19

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

output_trr_path: nvt.trr
output_gro_path: nvt.gro
output_edr_path: nvt.edr
output_log_path: nvt.log
output_cpt_path: nvt.cpt

step13_energy_nvt:
paths:

input_energy_path: dependency/step12_mdrun_nvt/output_edr_path
output_xvg_path: nvt_temp.xvg

properties:
terms: ["Temperature"]

step14_grompp_npt:
paths:
input_gro_path: dependency/step12_mdrun_nvt/output_gro_path
input_top_zip_path: dependency/step7_genion/output_top_zip_path
output_tpr_path: gppnpt.tpr
input_cpt_path: dependency/step12_mdrun_nvt/output_cpt_path

properties:
mdp:

nsteps: 5000
simulation_type: npt

step15_mdrun_npt:
paths:
input_tpr_path: dependency/step14_grompp_npt/output_tpr_path
output_trr_path: npt.trr
output_gro_path: npt.gro
output_edr_path: npt.edr
output_log_path: npt.log
output_cpt_path: npt.cpt

step16_energy_npt:
paths:

input_energy_path: dependency/step15_mdrun_npt/output_edr_path
output_xvg_path: npt_den_press.xvg

properties:
terms: ["Pressure","Density"]

step17_grompp_md:
paths:
input_gro_path: dependency/step15_mdrun_npt/output_gro_path
input_top_zip_path: dependency/step7_genion/output_top_zip_path
output_tpr_path: gppmd.tpr
input_cpt_path: dependency/step15_mdrun_npt/output_cpt_path

properties:
mdp:

nsteps: 50000
simulation_type: free

step18_mdrun_md:
paths:
input_tpr_path: dependency/step17_grompp_md/output_tpr_path
output_trr_path: md.trr
output_gro_path: md.gro
output_edr_path: md.edr

(continues on next page)

20 Chapter 1. Contents

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

output_log_path: md.log
output_cpt_path: md.cpt

step19_rmsfirst:
paths:

input_structure_path: dependency/step17_grompp_md/output_tpr_path
input_traj_path: dependency/step18_mdrun_md/output_trr_path
output_xvg_path: md_rmsdfirst.xvg

properties:
selection: Backbone

step20_rmsexp:
paths:

input_structure_path: dependency/step8_grompp_min/output_tpr_path
input_traj_path: dependency/step18_mdrun_md/output_trr_path
output_xvg_path: md_rmsdexp.xvg

properties:
selection: Backbone

step21_rgyr:
paths:

input_structure_path: dependency/step17_grompp_md/output_tpr_path
input_traj_path: dependency/step18_mdrun_md/output_trr_path
output_xvg_path: md_rgyr.xvg

properties:
selection: Backbone

step22_image:
paths:

input_traj_path: dependency/step18_mdrun_md/output_trr_path
input_top_path: dependency/step17_grompp_md/output_tpr_path
output_traj_path: imaged_traj.trr

properties:
center_selection: Protein
output_selection: Protein
pbc: mol
center : True

step23_dry:
paths:

input_structure_path: dependency/step18_mdrun_md/output_gro_path
input_top_path: dependency/step17_grompp_md/output_tpr_path
output_str_path: imaged_structure.gro

properties:
selection: Protein

Running the workflow:

The final step of the process is running the workflow. For that, the complete workflow Python Script should be
written to a file (e.g. biobb_MDsetup_tutorial.py), the YAML configuration input file should be written to a separate
file (e.g. biobb_MDsetup_tutorial.yaml) and finally both files should be used for the command line execution.

As in the previous example, it is important to note that in order to properly run the workflow, all the software
dependencies should have been previously installed in the system, following the Protein MD tutorial installation
steps (Conda Installation and Launch).

1.2. Command-line workflows with BioExcel Building Blocks 21

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

The final command line is shown in the cell below:

python biobb_MDsetup_tutorial.py biobb_MDsetup_tutorial.yaml

Workflow output

The execution of the workflow will write information to the standard output such as the tools being executed, the
command lines, inputs and outputs used, and state of each step (exit codes). Thanks to the additional information
added in the Python Script, the log file contains a line for each of the steps being executed. The next cell contains a
real output for the execution of the Protein MD Setup command line workflow:

2020-05-21 08:51:15,517 [MainThread] [INFO] step1_pdb: Download the initial
→˓Structure
2020-05-21 08:51:15,518 [MainThread] [INFO] Downloading: 1aki from: https://
→˓files.rcsb.org/download/1aki.pdb
2020-05-21 08:51:16,545 [MainThread] [INFO] Writting pdb to: /Users/biobb_
→˓tutorials/VT/cli/Yaml/md_tutorial/step1_pdb/structure.pdb
2020-05-21 08:51:16,545 [MainThread] [INFO] Filtering lines NOT starting with
→˓one of these words: ['ATOM', 'MODEL', 'ENDMDL']
2020-05-21 08:51:16,547 [MainThread] [INFO] step2_fixsidechain: Modeling the
→˓missing heavy atoms in the structure side chains
2020-05-21 08:51:17,087 [MainThread] [INFO] Executing: check_structure -i /
→˓Users/biobb_tutorials/VT/cli/Yaml/md_tutorial/step1...
2020-05-21 08:51:17,088 [MainThread] [INFO] Exit code 0
2020-05-21 08:51:17,088 [MainThread] [INFO] step3_pdb2gmx: Generate the topology
2020-05-21 08:51:17,605 [MainThread] [INFO] Executing: gmx pdb2gmx -f /Users/
→˓biobb_tutorials/VT/cli/Yaml/md_tutorial/step2_fix...
2020-05-21 08:51:17,606 [MainThread] [INFO] Exit code 0
2020-05-21 08:51:17,606 [MainThread] [INFO] Compressing topology to: /Users/
→˓biobb_tutorials/VT/cli/Yaml/md_tutorial/step3_pdb2gmx/pdb2gmx_top.zip
2020-05-21 08:51:17,621 [MainThread] [INFO] Removed: ['step3_pdb2gmx_p2g.top',
→˓ 'step3_pdb2gmx_p2g.itp']
2020-05-21 08:51:17,621 [MainThread] [INFO] step4_editconf: Create the solvent box
2020-05-21 08:51:17,645 [MainThread] [INFO] Centering molecule in the box.
2020-05-21 08:51:17,645 [MainThread] [INFO] Distance of the box to molecule:
→˓ 1.00
2020-05-21 08:51:17,645 [MainThread] [INFO] Box type: cubic
2020-05-21 08:51:17,680 [MainThread] [INFO] Executing: gmx editconf -f /Users/
→˓biobb_tutorials/VT/cli/Yaml/md_tutorial/step3_pd...
2020-05-21 08:51:17,681 [MainThread] [INFO] Exit code 0
2020-05-21 08:51:17,681 [MainThread] [INFO] step5_solvate: Fill the solvent box
→˓with water molecules
2020-05-21 08:51:18,031 [MainThread] [INFO] Executing: gmx solvate -cp /Users/
→˓biobb_tutorials/VT/cli/Yaml/md_tutorial/step4_ed...
2020-05-21 08:51:18,031 [MainThread] [INFO] Exit code 0
2020-05-21 08:51:18,046 [MainThread] [INFO] Removed: ['0fd87786-2e54-429b-
→˓9c0f-4861286178d9']
2020-05-21 08:51:18,046 [MainThread] [INFO] step6_grompp_genion: Preprocess ion
→˓generation
2020-05-21 08:51:18,073 [MainThread] [INFO] Will run a minimization md of
→˓5000 steps
2020-05-21 08:51:18,478 [MainThread] [INFO] Executing: gmx grompp -f step6_
→˓grompp_genion_grompp.mdp -c /Users/biobb_tutorials/...
2020-05-21 08:51:18,478 [MainThread] [INFO] Exit code 0
2020-05-21 08:51:18,479 [MainThread] [INFO] Removed: ['3e68b0e0-75f8-4696-
→˓9991-d56cc6eb18ee', 'mdout.mdp', 'step6_grompp_genion_grompp.mdp']

(continues on next page)

22 Chapter 1. Contents

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

2020-05-21 08:51:18,479 [MainThread] [INFO] step7_genion: Ion generation
2020-05-21 08:51:18,498 [MainThread] [INFO] To reach up 0.05 mol/litre
→˓concentration
2020-05-21 08:51:18,638 [MainThread] [INFO] Executing: echo "SOL" | gmx
→˓genion -s /Users/biobb_tutorials/VT/cli/Yaml/md_tutori...
2020-05-21 08:51:18,638 [MainThread] [INFO] Exit code 0
2020-05-21 08:51:18,653 [MainThread] [INFO] Removed: ['5f216174-ac78-4592-
→˓bd88-742c4d8fcf67']
2020-05-21 08:51:18,653 [MainThread] [INFO] step8_grompp_min: Preprocess energy
→˓minimization
2020-05-21 08:51:18,678 [MainThread] [INFO] Will run a minimization md of
→˓5000 steps
2020-05-21 08:51:19,083 [MainThread] [INFO] Executing: gmx grompp -f step8_
→˓grompp_min_grompp.mdp -c /Users/biobb_tutorials/VT/...
2020-05-21 08:51:19,084 [MainThread] [INFO] Exit code 0
2020-05-21 08:51:19,085 [MainThread] [INFO] Removed: ['8bc12f7e-5df6-4b86-
→˓b19e-93363d9ed2b4', 'mdout.mdp', 'step8_grompp_min_grompp.mdp']
2020-05-21 08:51:19,085 [MainThread] [INFO] step9_mdrun_min: Execute energy
→˓minimization
2020-05-21 08:53:13,890 [MainThread] [INFO] Executing: gmx mdrun -s /Users/
→˓biobb_tutorials/VT/cli/Yaml/md_tutorial/step8_gromp...
2020-05-21 08:53:13,891 [MainThread] [INFO] Exit code 0
2020-05-21 08:53:13,892 [MainThread] [INFO] Removed: []
2020-05-21 08:53:13,892 [MainThread] [INFO] step10_energy_min: Compute potential
→˓energy during minimization
2020-05-21 08:53:13,932 [MainThread] [INFO] Executing: gmx energy -f /Users/
→˓biobb_tutorials/VT/cli/Yaml/md_tutorial/step9_mdru...
2020-05-21 08:53:13,932 [MainThread] [INFO] Exit code 0
2020-05-21 08:53:13,934 [MainThread] [INFO] step11_grompp_nvt: Preprocess system
→˓temperature equilibration
2020-05-21 08:53:13,956 [MainThread] [INFO] Will run a nvt md of 5000 steps
2020-05-21 08:53:14,490 [MainThread] [INFO] Executing: gmx grompp -f step11_
→˓grompp_nvt_grompp.mdp -c /Users/biobb_tutorials/VT...
2020-05-21 08:53:14,490 [MainThread] [INFO] Exit code 0
2020-05-21 08:53:14,491 [MainThread] [INFO] Removed: ['fcc69355-9536-44b5-
→˓9b26-bda7f6ec9bf6', 'mdout.mdp', 'step11_grompp_nvt_grompp.mdp']
2020-05-21 08:53:14,491 [MainThread] [INFO] step12_mdrun_nvt: Execute system
→˓temperature equilibration
2020-05-21 08:55:26,785 [MainThread] [INFO] Executing: gmx mdrun -s /Users/
→˓biobb_tutorials/VT/cli/Yaml/md_tutorial/step11_grom...
2020-05-21 08:55:26,785 [MainThread] [INFO] Exit code 0
2020-05-21 08:55:26,787 [MainThread] [INFO] Removed: ['traj_comp.xtc']
2020-05-21 08:55:26,787 [MainThread] [INFO] step13_energy_nvt: Compute
→˓temperature during NVT equilibration
2020-05-21 08:55:26,825 [MainThread] [INFO] Executing: gmx energy -f /Users/
→˓biobb_tutorials/VT/cli/Yaml/md_tutorial/step12_mdr...
2020-05-21 08:55:26,825 [MainThread] [INFO] Exit code 0
2020-05-21 08:55:26,826 [MainThread] [INFO] step14_grompp_npt: Preprocess system
→˓pressure equilibration
2020-05-21 08:55:26,846 [MainThread] [INFO] Will run a npt md of 5000 steps
2020-05-21 08:55:27,422 [MainThread] [INFO] Executing: gmx grompp -f step14_
→˓grompp_npt_grompp.mdp -c /Users/biobb_tutorials/VT...
2020-05-21 08:55:27,422 [MainThread] [INFO] Exit code 0
2020-05-21 08:55:27,424 [MainThread] [INFO] Removed: ['b8b9a946-8614-4930-
→˓9dcf-2de71cbd1d58', 'mdout.mdp', 'step14_grompp_npt_grompp.mdp']
2020-05-21 08:55:27,424 [MainThread] [INFO] step15_mdrun_npt: Execute system
→˓pressure equilibration

(continues on next page)

1.2. Command-line workflows with BioExcel Building Blocks 23

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

(continued from previous page)

2020-05-21 08:57:41,425 [MainThread] [INFO] Executing: gmx mdrun -s /Users/
→˓biobb_tutorials/VT/cli/Yaml/md_tutorial/step14_grom...
2020-05-21 08:57:41,425 [MainThread] [INFO] Exit code 0
2020-05-21 08:57:41,427 [MainThread] [INFO] Removed: ['traj_comp.xtc']
2020-05-21 08:57:41,427 [MainThread] [INFO] step16_energy_npt: Compute Density &
→˓Pressure during NPT equilibration
2020-05-21 08:57:41,466 [MainThread] [INFO] Executing: gmx energy -f /Users/
→˓biobb_tutorials/VT/cli/Yaml/md_tutorial/step15_mdr...
2020-05-21 08:57:41,466 [MainThread] [INFO] Exit code 0
2020-05-21 08:57:41,466 [MainThread] [INFO] step17_grompp_md: Preprocess free
→˓dynamics
2020-05-21 08:57:41,487 [MainThread] [INFO] Will run a free md of 100.0 pico
→˓seconds
2020-05-21 08:57:41,895 [MainThread] [INFO] Executing: gmx grompp -f step17_
→˓grompp_md_grompp.mdp -c /Users/biobb_tutorials/VT/...
2020-05-21 08:57:41,895 [MainThread] [INFO] Exit code 0
2020-05-21 08:57:41,896 [MainThread] [INFO] Removed: ['1e93ee86-7a67-47d7-
→˓a877-aa7e3ce5e0fb', 'mdout.mdp', 'step17_grompp_md_grompp.mdp']
2020-05-21 08:57:41,896 [MainThread] [INFO] step18_mdrun_md: Execute free
→˓molecular dynamics simulation
2020-05-21 09:19:08,588 [MainThread] [INFO] Executing: gmx mdrun -s /Users/
→˓biobb_tutorials/VT/cli/Yaml/md_tutorial/step17_grom...
2020-05-21 09:19:08,589 [MainThread] [INFO] Exit code 0
2020-05-21 09:19:08,591 [MainThread] [INFO] Removed: ['traj_comp.xtc']
2020-05-21 09:19:08,591 [MainThread] [INFO] step19_rmsfirst: Compute Root Mean
→˓Square deviation against equilibrated structure (first)
2020-05-21 09:19:08,903 [MainThread] [INFO] Executing: echo "Backbone Backbone
→˓" | gmx rms -s /Users/biobb_tutorials/VT/cli/Yam...
2020-05-21 09:19:08,903 [MainThread] [INFO] Exit code 0
2020-05-21 09:19:08,903 [MainThread] [INFO] step20_rmsexp: Compute Root Mean
→˓Square deviation against minimized structure (exp)
2020-05-21 09:19:09,182 [MainThread] [INFO] Executing: echo "Backbone Backbone
→˓" | gmx rms -s /Users/biobb_tutorials/VT/cli/Yam...
2020-05-21 09:19:09,182 [MainThread] [INFO] Exit code 0
2020-05-21 09:19:09,182 [MainThread] [INFO] step21_rgyr: Compute Radius of
→˓Gyration to measure the protein compactness during the free MD simulation
2020-05-21 09:19:09,425 [MainThread] [INFO] Executing: echo "Backbone" | gmx
→˓gyrate -s /Users/biobb_tutorials/VT/cli/Yaml/md_t...
2020-05-21 09:19:09,425 [MainThread] [INFO] Exit code 0
2020-05-21 09:19:09,425 [MainThread] [INFO] step22_image: Imaging the resulting
→˓trajectory
2020-05-21 09:19:09,740 [MainThread] [INFO] Executing: echo "Protein" "Protein
→˓" | gmx trjconv -f /Users/biobb_tutorials/VT/cli...
2020-05-21 09:19:09,740 [MainThread] [INFO] Exit code 0
2020-05-21 09:19:09,741 [MainThread] [INFO] step23_dry: Removing water molecules
→˓and ions from the resulting structure
2020-05-21 09:19:09,913 [MainThread] [INFO] Executing: echo "Protein" | gmx
→˓trjconv -f /Users/biobb_tutorials/VT/cli/Yaml/md_t...
2020-05-21 09:19:09,913 [MainThread] [INFO] Exit code 0

Next steps

Now that you have the Protein MD Setup command line workflow ready, try to play with it doing simple exercises:

• Change input PDB code.

• Make equilibration phases long.

24 Chapter 1. Contents

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

• Remove / add new steps into the workflow.

• Introduce a loop of 2 different PDB codes.

• Introduce a mutation.

• Program an Alanine-Scanning.

Some of these exercises (and more) can be found in the Virtual Training section (examples link) of the BioExcel
building blocks website.

If you have found the tutorial interesting, please take a look at the BioExcel events, where new Webinars and Virtual
Trainings about the BioExcel building blocks are being planned.

1.2.9 Questions & Comments

Questions, issues, suggestions and comments are really welcome!

• GitHub issues:

– https://github.com/bioexcel/biobb

• BioExcel forum:

– https://ask.bioexcel.eu/c/BioExcel-Building-Blocks-library

1.2. Command-line workflows with BioExcel Building Blocks 25

http://mmb.irbbarcelona.org/biobb/about/training#virtualtrainings
http://mmb.irbbarcelona.org/biobb/assets/pages/media/pages/files/BioExcel_biobb_VT_1.tgz
http://mmb.irbbarcelona.org/biobb
http://mmb.irbbarcelona.org/biobb
https://bioexcel.eu/news-and-events/events/
https://github.com/bioexcel/biobb
https://ask.bioexcel.eu/c/BioExcel-Building-Blocks-library

biobb𝑤𝑓𝑐𝑜𝑚𝑚𝑎𝑛𝑑− 𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒1.0.0

26 Chapter 1. Contents

CHAPTER 2

Github repository.

27

	Contents
	Github repository.

